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PRUNING



WHY PRUNING ?
Deep Neural Networks have redundant parameters.

Such parameters have a negligible value and can be ignored.

Removing them does not affect performance.

Figure: Distribution of weights after 
Training



TYPES OF PRUNING

● Fine Pruning 
-- Prune the weights

● Coarse Pruning
-- Prune neurons and layers

● Static Pruning
-- Pruning after training

● Dynamic Pruning
-- Pruning during training time



Weight Pruning

❖ The matrices can be made sparse. A naive method is to drop those weights 
which are 0 after training.

❖ Drop the weights below some threshold.
❖ Can be stored in optimized way if matrix becomes sparse.
❖ Sparse Matrix Multiplications are faster.

(After Training)



Ensuring Sparsity

Addition of L1 regulariser to ensure sparsity



Sparsify at Training Time

Add regularizer (weight decay) to loss function

  Loss +  ∑ |wi|
r

L1 regularizer : r = 1, L2 regularizer : r = 2

Train for few 
epochs 

Prune weights 
which are 0 or 
below some 
threshold

Start training 
again

DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED 
QUANTIZATION AND HUFFMAN CODING Song Han, Huizi Mao, William J. Dally

Iterative pruning and 
retraining



Results reported by Deep Compression



Remaining parameters in Different Layers

ALEXNET

VGG16

DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED 
QUANTIZATION AND HUFFMAN CODING Song Han, Huizi Mao, William J. Dally



Comments on Weight Pruning

1. Matrices become sparse. Storage in HDD is efficient.
2. Same memory in RAM is occupied by the weight matrices.
3. Matrix multiplication is not faster since each 0 valued weight occupies as 

much space as before.
4. Optimized Sparse matrix  multiplication algorithms need to be coded up 

separately even for a basic forward pass operation.



Neuron Pruning

➔ Previously, we had a sparse weight matrix.
➔ Now, we will be effectively removing rows and columns in 

a weight matrix.
➔ Matrix multiplication will be faster improving test time.
➔ Drop Neuron uses custom regularizers to prune neurons.
➔ Use thresholding to remove all connections of a neuron.

DropNeuron: Simplifying the Structure of Deep Neural Networks Wei Pan, Hao Dong, Yike Guo



Dropping Neurons by Regularization

DropNeuron: Simplifying the Structure of Deep Neural Networks Wei Pan, Hao Dong, Yike Guo



Dropping principles

● All input connections to a neuron is forced to be 0 or as close to 0 as 
possible. (force li_regulariser to be small)

● All output connections of a neuron is forced to be 0 or as close to zero 
as possible. (force lo_regulariser to be small)

● Add regularisers to the loss function and train.
● Remove all connections less than threshold after training.
● Discard neuron with no connection.

DropNeuron: Simplifying the Structure of Deep Neural Networks Wei Pan, Hao Dong, Yike Guo



Effect of neuron pruning on weight matrices

DropNeuron: Simplifying the Structure of Deep Neural Networks Wei Pan, Hao Dong, Yike Guo



Results on FC Layer (MNIST)

DropNeuron: Simplifying the Structure of Deep Neural Networks Wei Pan, Hao Dong, Yike Guo



Neuron and Layer Pruning

● Can we learn hyperparameters by Backpropagation?
○ Hidden Layer / Filter size
○ Number of layers

● We would actually be learning the architecture
● Modifying the activation function
● ‘w’ and ‘d’ are binary variables in the equation below.

Learning Neural Network Architectures using Backpropagation Suraj Srinivas , R. Venkatesh Babu 



Loss Function

Learning Neural Network Architectures using Backpropagation Suraj Srinivas , R. Venkatesh Babu 



Results

Learning Neural Network Architectures using Backpropagation Suraj Srinivas , R. Venkatesh Babu 



QUANTIZATION



Binary Quantization

Size Drop : 32X

Runtime : Much faster (7x) matrix multiplication for binary matrices.

Accuracy Drop : Classification error is about 20% on the top 5 accuracy on 
ILSVRC dataset.

COMPRESSING DEEP CONVOLUTIONAL NETWORKS USING VECTOR QUANTIZATION Yunchao 
Gong, Liu Liu  , Ming Yang, Lubomir Bourdev



Binary Quantization while Training

● Add regularizer and round at the end of training

Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or 
−1 Matthieu Courbariaux, Itay Hubara , Daniel Soudry , Ran El-Yaniv,  Yoshua Bengio



8-bit uniform quantization

● Divide the max and min weight values into 256 equal divisions uniformly.

● Round weights to the nearest point

● Store weights as 8 bit ints

Size Drop : 4X

Runtime : Much faster matrix multiplication for 8 bit matrices. 

Accuracy Drop : Error is acceptable for classification for non critical tasks

https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/



8 bit Uniform Quantization while Training
● Add L1, L2 regularizers to ensure that the min and max values are close.



Non Uniform Quantization/ Weight Sharing 

● perform k-means clustering on weights.

● Need to store mapping from integers to cluster centers. We only need log (k) 
bits to code the clusters which results in a compression factor rate of 32/ log 
(k). In this case the compression rate is 4.

DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED 
QUANTIZATION AND HUFFMAN CODING Song Han, Huizi Mao, William J. Dally



Weight Sharing while Training
● Iterate

○ Train 
○ Cluster weights
○ Make them same 

● Need to ensure the gradients 
are updated with respect to the 
weight shared model.

DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED 
QUANTIZATION AND HUFFMAN CODING Song Han, Huizi Mao, William J. Dally



Deep Compression by Song Han

DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED 
QUANTIZATION AND HUFFMAN CODING Song Han, Huizi Mao, William J. Dally



Deep Compression by Song Han

DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED 
QUANTIZATION AND HUFFMAN CODING Song Han, Huizi Mao, William J. Dally



Product Quantization

Partition the given matrix into several submatrices and we perform k-means 
clustering for all of them.

COMPRESSING DEEP CONVOLUTIONAL NETWORKS USING VECTOR QUANTIZATION Yunchao 
Gong, Liu Liu  , Ming Yang, Lubomir Bourdev



Residual Quantization
First quantize the vectors into k-centers. 

Next step is to find out the residuals for each data point(w-c) and perform k-means 
on the residuals

Then the resultant weight vectors are calculated as follows. 

COMPRESSING DEEP CONVOLUTIONAL NETWORKS USING VECTOR QUANTIZATION Yunchao 
Gong, Liu Liu  , Ming Yang, Lubomir Bourdev



Comparison of Quantization methods on Imagenet

COMPRESSING DEEP CONVOLUTIONAL NETWORKS USING VECTOR QUANTIZATION Yunchao 
Gong, Liu Liu  , Ming Yang, Lubomir Bourdev



XNOR Net

❖ Binary Weight Networks :
➢ Estimate real time weight filter using a binary filter.
➢ Only the weights are binarized.
➢ Convolutions are only estimated with additions and subtractions (no multiplications required 

due to binarization).

❖ XNOR Networks:
➢ Binary estimation of both inputs and weights
➢ Input to the convolutions are binary.
➢ Binary inputs and weights ensure calculations using XNOR operations.

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks Mohammad Rastegari , 
Vicente Ordonez , Joseph Redmon , Ali Farhadi



Binary weight networks

Estimating binary weights:

Objective function : 

Solution : 

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks Mohammad Rastegari , 
Vicente Ordonez , Joseph Redmon , Ali Farhadi



XNOR Networks
Objective function for dot product approximation:

We can approximate the input I and weight filter W by using the following binary 
operations:  

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks Mohammad Rastegari , 
Vicente Ordonez , Joseph Redmon , Ali Farhadi



Approximating a convolution using binary operations

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks Mohammad Rastegari , 
Vicente Ordonez , Joseph Redmon , Ali Farhadi



Results

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks Mohammad Rastegari , 
Vicente Ordonez , Joseph Redmon , Ali Farhadi



Results

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks Mohammad Rastegari , 
Vicente Ordonez , Joseph Redmon , Ali Farhadi



FIXED POINT REPRESENTATION

FLOATING POINT VS FIXED POINT REPRESENTATION



Fixed point

➔ Fixed point formats consist in a signed mantissa and a global scaling factor 
shared between all fixed point variables. It is usually ‘fixed’.

➔ Reducing the scaling factor reduces the range and augments the precision of 
the format.

➔  It relies on integer operations. It is hardware-wise cheaper than its floating 
point counterpart, as the exponent is shared and fixed. 



Disadvantages of using fixed point

❖ When training deep neural networks :
➢ Activations , gradients and parameters have very different ranges.
➢ The ranges of the gradients slowly diminish during training.
➢ Fixed point arithmetic is not optimised on regular hardware and 

specialised hardware such as FPGAs are required.

❖ As a result the fixed point format with its unique shared fixed exponent is 
ill-suited to deep learning.

❖ The dynamic fixed point format is a variant of the fixed point format in which 
there are several scaling factors instead of a single global one.



Summary

● Pruning weights and neurons

● Uniform Quantization

● Non Uniform Quantization / Weight Sharing
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