

Class2Str: End to End Latent Hierarchy Learning

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY Soham Saha*, Girish Varma*, C.V. Jawahar

HYDERABAD Center for Visual Information Technology, Kohli Center for Intelligent Systems, IIIT Hyderabad

MOTIVATION

- One-hot representation of classes assumes class independence which might not be the case.
- Classes have visual similarity and often form a hierarchy. Learning this hierarchy increases the ease of classification.
- Learning a latent hierarchy explicitly in the neural network architecture, could also improve efficiency.

APPROACH

- We model hierarchy as a binary tree and map every leaf node to the prefix string given by the path in the tree from root to leaf.
- Deep Neural networks consists of a Feature Extractor followed by a Classifier Network which is Fully Connected.

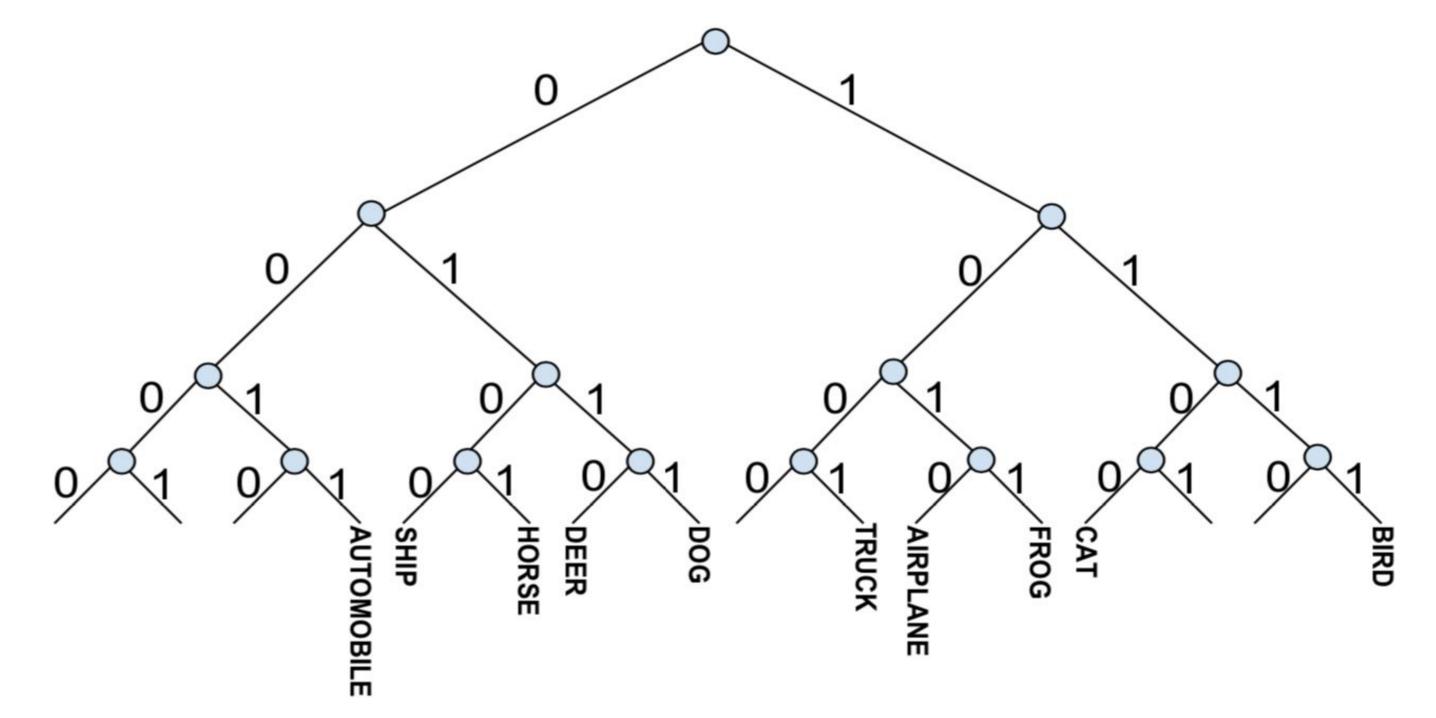
Training to learn a multi-level hierarchy

 $\sum_{i=1}^L \mu^i H(p^i,q^i)$

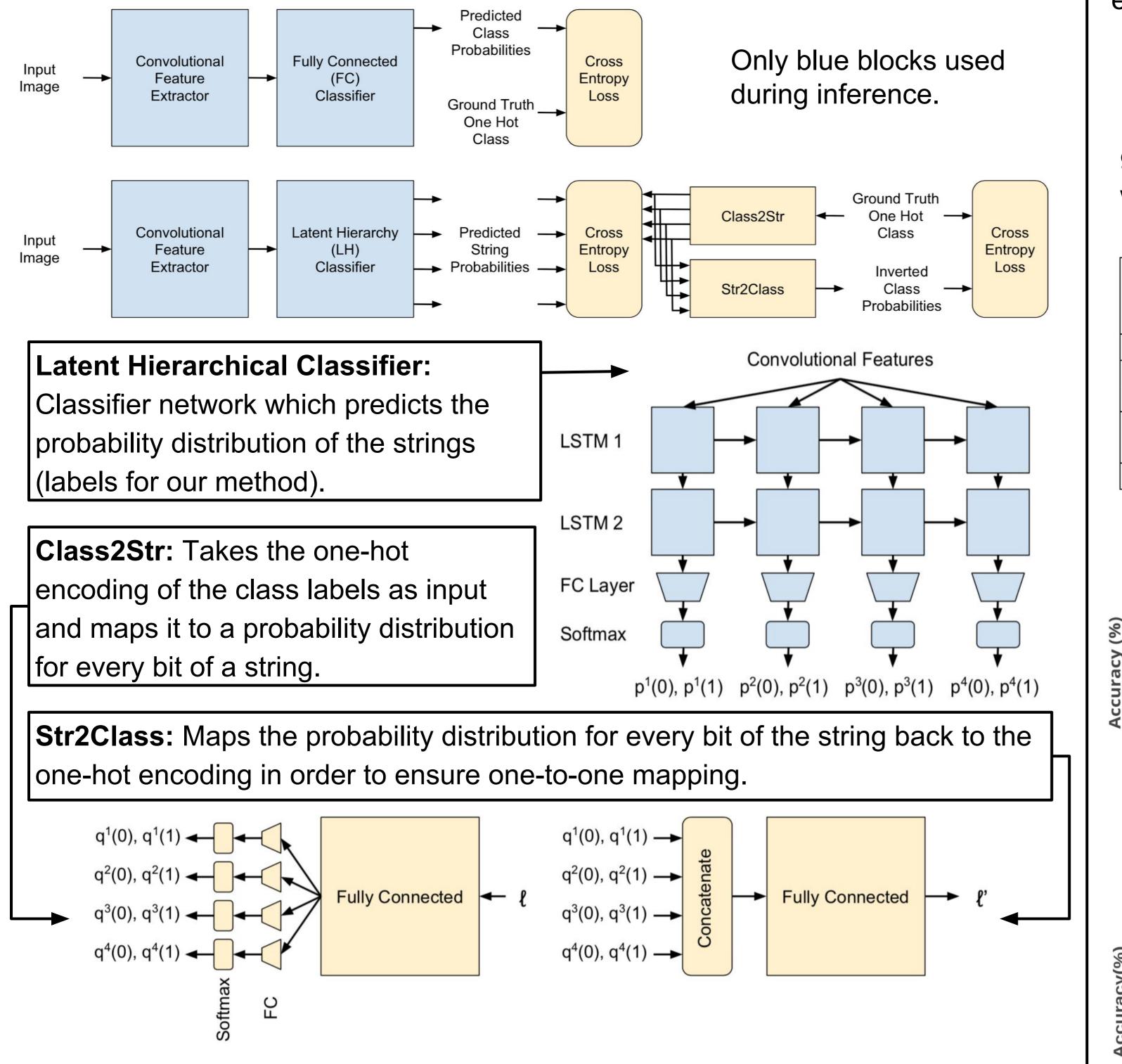
This component ensures that a multi-level hierarchy is learn by penalizing misclassification at an earlier node of the tree more than the later nodes. The decay factor $\mu < 1$ ensures this.

IAPR 🐵

ICPR 2018



- We replace the fully connected classifier with a latent hierarchy classifier which learns a latent hierarchy by means of a **Class2Str** network.
- To ensure that the Class to String mapping learnt is a one-one mapping, we also have a **Str2Class** network which inverts the mapping.
- **Class2Str** and **Str2Class** is replaced by the learnt static map from class to string during inference, increasing the efficiency.



Learnt hierarchy for CIFAR 10 shows that visually similar objects such as dog, deer and horse have a longer common prefix. Hence, this results in them being closer to each other in the leaves of the hierarchy tree.

RESULTS

98% parameter reduction for CIFAR 100 and 41% reduction for Imagenet 1K without loss in accuracy.

Dataset	% Acc of	% Acc of	% Acc of	#parameters	#parameters	Reduction	Reduction in		
	FC	LH	reduced FC	in FC	in	in	test time		
	Classifier	Classifier	Classifier	Classifier	LH Classifier	parameters	per image		
MNIST	99.38	99.36	98.45	1.61 M	31 K	98%	13.9%		
CIFAR 10	90.43	90.51	88.40	1.58 M	6 K	99%	15.9%		
	% Acc in Maxout: 90.65, Network in Network: 91.2, Deeply Supervised Networks : 91.78								
CIFAR 100	64.65	64.67	57.90	1.58 M	30 K	98%	14.8%		
	% Acc in Maxout: 61.43, Network in Network: 64.32, Deeply Supervised Networks : 65.43								
Imagenet 1K	70.51	70.11	67.88	123.63 M	72.42 M	41%	5.5%		

Accuracy at every bit for CIFAR 10

Accuracy at every bit for CIFAR 100

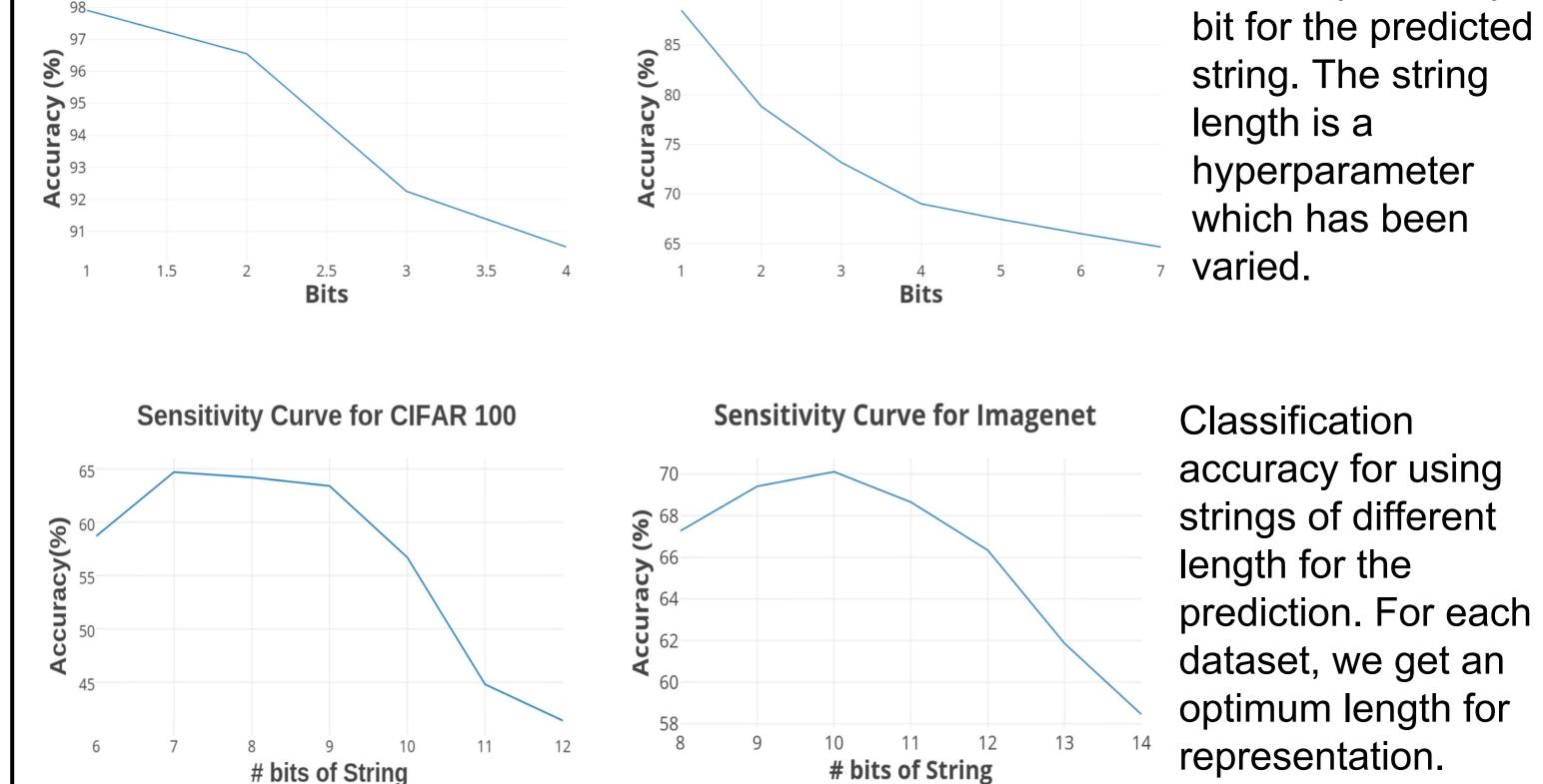
Accuracy at every

LEARNING A LATENT HIERARCHY

We propose a **structured loss** for training and learning a latent hierarchy. The loss function we use is as under:

$$lpha H(\ell,\ell') + eta \sum_{i=1}^L \mu^i H(p^i,q^i) - \gamma \sum_{i=1}^L (q^i(0)^2 + q^i(1)^2) + \delta L^2(W)$$

• The first component of this loss calculates the cross entropy between the Class2Str and Str2Class outputs.



Qualitative Results

Learnt strings with the highest length of the longest common prefix (for CIFAR) show that visually similar classes are close to each other in the learnt hierarchical tree.

	<u>Image E</u>	<u>Strings</u>	Length of the Longest Common Prefix			
shrew	shrew	porcupine	otter	otter	0011100 (shrew) , 0011110 (porcupine) , 0011111 (otter)	5
lobster	aquarium_fish	flatfish	crocodile	ray	0101010 (lobster) , 0101011 (aquarium fish) , 0101100 (flatfish) , 0101110 (crocodile) , 0101111 (ray)	4
maple tree	lawn_mower	lawn_mower	tiger	worm	1011011 (maple_tree) , 1011101 (lawn_mower), 1011110 (tiger), 1011111 (worm)	4
pine_tree	pine_tree	palm_tree	palm_tree	table	0111101 (pine_tree) , 01111110 (palm_tree), 0111111 (table)	5
beaver	skunk	rabbit	rabbit	wolf	1111000 (beaver), 1111001 (skunk) , 1111010 (rabbit) , 1111011 (wolf)	4

- The second component is the cross entropy between the predicted and the learnt probabilities of each bit of the string.
- The third component is for introducing bias in the learnt string probabilities and ensuring that they are close to 1 or 0.
- The final component acts as a regularization for the entire weight space.

