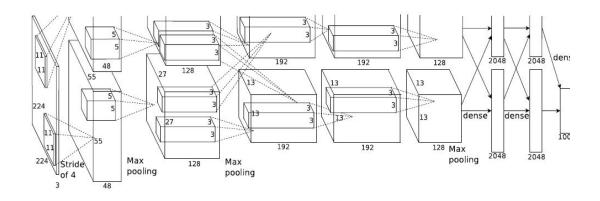


Compressing Deep Neural Networks for Recognizing Places

Soham Saha, Girish Varma, C.V. Jawahar

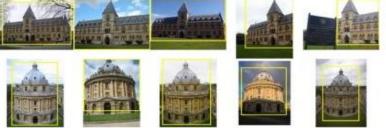
Center for Visual Information Technology, KCIS, IIIT Hyderabad, India

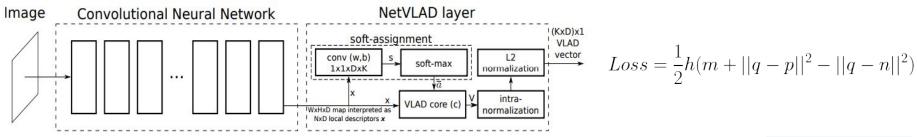
> Nanjing, China November 26-29, 2017 Paper ID: 137


Part 1

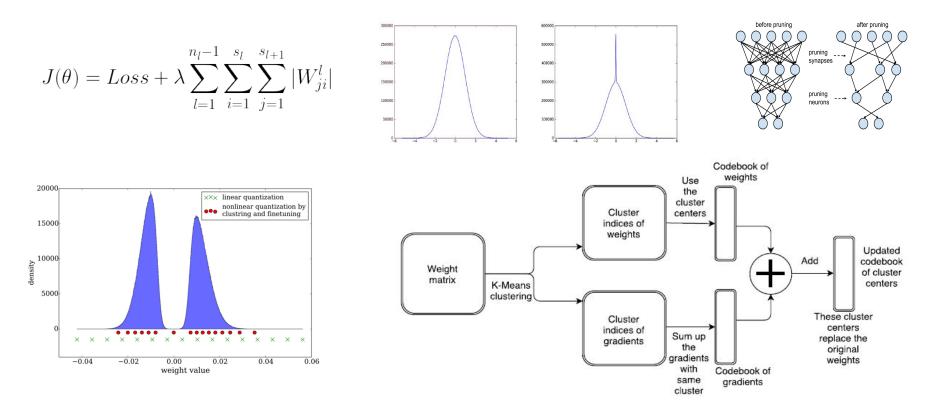
Motivation

- Deep Learning models need to run on small devices
- Alexnet has 60M parameters (~240MB on disk)
- VGG-16 has ~140M parameters (~530MB on disk)



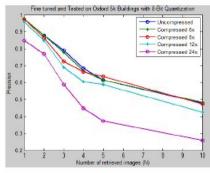

Contribution

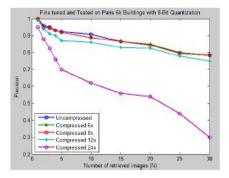
Part 2

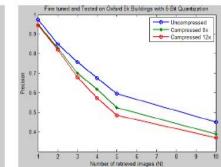


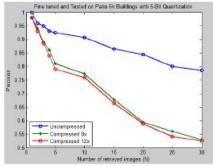
Contribution

Part 2




Part3


Results


Method	Threshold for pruning	Percentage of Parameters Pruned	Drop in MAP (Oxford Buildings)	Drop in MAP (Paris Buildings)	Memory usage (MB)
Alexnet + NetVLAD + whitening (base model)	0	0	0%	0%	248.6
8 bits quantization	0.001	25.77	0%	0%	41.4
	0.005	48.44	0%	0%	32.4
	0.01	69.92	2.1%	1.8%	20.0
	0.05	85.77	14.2%	13.3%	10.3
5 bits quantization	0.005	52.39	2.9%	3.4%	19.5
	0.01	74.95	7.3%	6.7%	10.6
VGG16 + NetVLAD + whitening (base model)	0	0	0%	0%	529.5
8 bits quantization	0.001	25.52	0%	0%	89.6
	0.005	51.77	0%	0%	65.1
	0.01	68.23	2%	2.1%	40.5
	0.05	84.68	11.8%	14.1%	21.7
5 bits quantization	0.005	55.77	2.2%	3.6%	42.1
	0.01	75.66	6.8%	5.6%	21.2

Visit our poster for more details!

